

Engineered Bamboo for Sustainable Construction May 17 – 19, 2022

Y. H. Chui

Professor
University of Alberta, Canada
and
Chair, ISO TC 165 'Timber Structures'

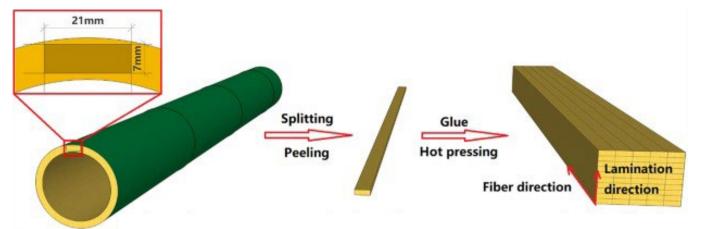
Engineered wood products in tall buildings

Cross Laminated Timber

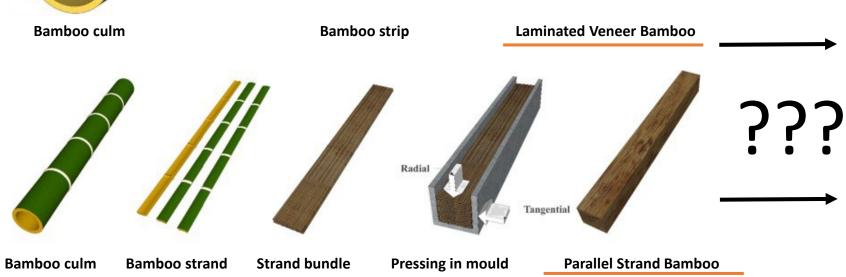
Structural Composite Lumber

Tallwood House, Vancouver

– Main driver is 'green'
credential of wood



Glulam



Dowel Laminated Timber

New generation of engineered bamboo composites

Acceptance through standardization and regulatory process is an essential step – ISO standardization process can play a key role

This presentation

- Introduction of ISO standards development process
- ISO standardization for timber and bamboo products in structural applications
- Suggestion for engineered bamboo composites (EBC)

ISO Standard Development

- ISO develops standards that can be directly adopted or used as model standards by member countries
- Traditional key objective:
 - ➤To facilitate trading of products and services between countries → Harmonization of standards
- Newly added objective:
 - ➤ To contribute to realization of United Nation's SDGs by 2030 affordable shelter, climate change, etc
 - Promotion of renewable, low carbon footprint material in construction would help achieve some of the SDG

ISO Technical Committees on Renewable Materials

ISO/TC 89 - Wood-based panels

ISO/TC 165 – Timber structures

ISO/TC 287 - Sustainable processes for wood and wood-based products

ISO/TC 296 - Bamboo and rattan

Standardization concerning structural applications of wood based products, and related lignocellulosic fibrous materials (e.g. bamboo)

ISO TC 165 'Timber Structures'- membership

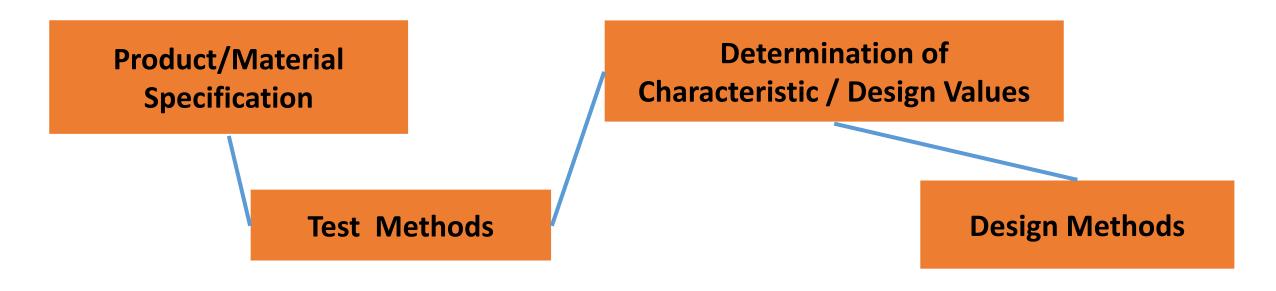
Secretariat Canada - Standards Council of Canada (SCC) North America Europe East Asia Oceania ■ PARTICIPATING MEMBERS (30) OBSERVING MEMBERS (34)

Requirements for acceptance of a product by building/design codes

- Manufactured according to a product standard
- Tested according to standard procedure
- Test data evaluated according to accepted procedure to derive design properties
- Accepted design procedure

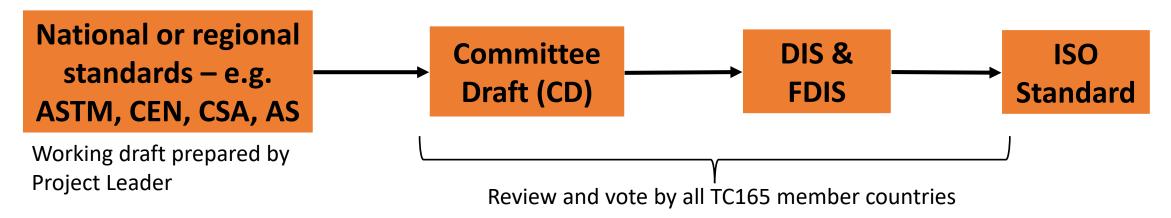
Standards

Product Specification


Test Methods

Determination of Characteristic / Design Values

Design Methods


Four categories of standards published by ISO TC 165 'Timber Structures'

- Since 2013 bamboo products are included in scope
- To-date 44 timber related and 3 bamboo related standards have been published

Typical process to develop timber-related ISO standards

Challenge

- Timber products have a long history of commercial production and each major producing country already has its own suite of standards:
 Manufacturing → Testing → Design Properties → Structural Design
- True harmonization of timber standards and therefore trade is often difficult to achieve

ISO TC 165 – Bamboo related standards (since 2013)

- Few national standards exist for structural bamboo products
- This is an area where ISO can play a leading role in developing truly harmonized international standards

Bamboo culm standards				
Product	ISO 19624: 2018	Grading of bamboo culms - Basic principles and procedures		
Testing	ISO 22157: 2019	Determination of physical and mechanical properties of bamboo culms - Test methods		
Design	ISO 22156 : 2021	Structural design		

ISO TC 165 – Bamboo related standards under development

Current projects focus on engineered bamboo composites (EBC)

Engineered bamboo composite related standards			
Product	Glued laminated bamboo – Product specifications		
Testing	Engineered bamboo products – Test methods for determination of physical and mechanical properties		
Design	Engineered bamboo products – Structural design		

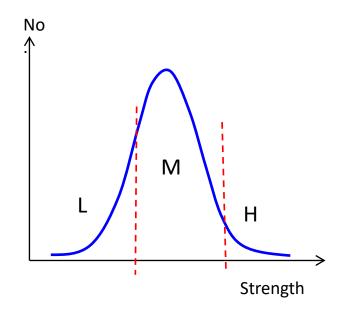
Suggestion for harmonization – Structural Class System for Engineered Bamboo Composites (EBC)

Background experimental study

A comprehensive testing program conducted by National Engineering Research Centre of Biomaterials, **Nanjing Forestry University** to characterize mechanical properties of EBC.

Provenance	Age	Product	Adhesive
Jiangxi	4	LVB, PSB	Phenolic
Hunan	5	LVB, PSB	Urea-formaldehyde
Fujian	3-4	LVB	Phenolic
Sichuan	5	LVB	Phenolic

Example of Structural Class System for EBC - Characteristic property requirements


Property	Symbol	BC1	BC2	ВС3	BC4
Bending strength	f _b (MPa)	10	14	18	22
Tensile strength	f _t (MPa)	6	10	14	18
Compression // strength	f _c (MPa)	8	12	16	20
Shear strength	f _v (MPa)	2	3	4	6
Compression perp strength	f _{cp} (MPa)	3	5	7	9
MOE	E (MPa)	10000	12000	14000	16000
Density	$\rho (kg/m^3)$	500	550	600	650

Benefits of a structural class system

Structural class	BC1	BC2	всз	BC4
Product	Fujian LVB Hunan LVB Sichuan LVB		Jiangxi LVB	Hunan PSB Jiangxi PSB

Facilitate Harmonization of Standards and International Trade

- Benefits for end users
 - Specifiers and designers can easily substitute products
- Benefits for producers
 - > Recognized properties to aim at
 - Can produce several grades from the same production – use of grading technologies

Thank you for your attention!

